
\
PERGAMON International Journal of Solids and Structures 25 "0888# 3830Ð3851

9919!6572:88:, ! see front matter Þ 0888 Elsevier Science Ltd[ All rights reserved
PII] S 9 9 1 9 ! 6 5 7 2 " 8 7 # 9 9 1 6 2 !X

Comparison of di}erent implementation algorithms for
HiSS constitutive models in FEM

G[W[ Wathugala�\ S[ Pal
Department of Civil and Environmental Engineering\ Louisiana State University\ Baton Rouge\ LA 69792\ U[S[A[

Received 02 August 0886^ accepted 19 July 0887

Abstract

Relative accuracy\ stability and e.ciency of four popular algorithms to implement elasto!plastic consti!
tutive models in non!linear _nite element procedures have been compared[ Elastic PredictorÐPlastic Cor!
rector "EPÐPC# method\ Plastic PredictorÐPlastic Corrector "PPÐPC# method\ Implicit Integration "Implicit#
method and Modi_ed Euler "ME# method were used to implement Hierarchical Single Surface "HiSS# d9�
model into the general purpose _nite element program ABAQUS[ First\ these algorithms were used outside
the _nite element program to simulate various triaxial stress paths[ After that\ they were used in ABAQUS
to simulate two strip footings] "a# displacement controlled rigid footing and "b# load controlled ~exible
footing[ The e}ect of the sub!strain increment size on the accuracy\ stability and e.ciency of each algorithm
during these simulations have been compared[ Implicit Method and ME performed well for some problems
but performed poorly on others[ EPÐPC and PPÐPC methods performed equally well for all the problems[
This also showed the importance of testing algorithms under various stress paths and boundary value
problems to assess their relative performance[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The stressÐstrain behavior of soils is nonlinear and stress and strain paths dependent[ Unlike
metals\ many soils develop volumetric strains due to pure shear stresses[ These characteristics of
soils make all the advanced constitutive models developed for them very complex[ The complexity
of these constitutive models prevents development of analytical solutions for boundary value
problems[ To be useful in solving practical problems\ these models need to be implemented into
numerical solution techniques[ Thus\ developing e.cient and robust algorithms for implementation
of constitutive models in computer procedures is very important[

There are several types of algorithms used to implement plasticity based constitutive models in
FEM[ Even though there are many papers on individual algorithms\ systematic comparisons of
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the performance of di}erent types of algorithms are rare[ In this paper\ the relative performance of
four algorithms in predicting stress and strain controlled laboratory tests and load and displacement
controlled boundary value problems has been compared[ The four algorithms used here can be
classi_ed as "0# elastic!predictorÐplastic corrector "EPÐPC#^ "1# plastic!predictorÐplastic corrector
"PPÐPC#^ "2# Implicit Integration "Implicit#^ and "3# modi_ed Euler "ME#[ All these algorithms
were implemented in the commercial _nite element program ABAQUS "HKS Inc[\ 0885# and used
for all the boundary value problems presented here[ Based on the numerical tests\ it was concluded
that EPÐPC and PPÐPC performed equally and were better in all aspects\ i[e[\ in terms of accuracy\
stability and e.ciency than other methods[

We have used the Hierarchical Single Surface "HiSS# d�9 model "Wathugala and Desai\ 0882# in
the numerical comparison[ However\ all the derivations were done for a general plasticity based
model whenever possible[ The concepts and ideas developed here may be applicable to other
plasticity based models and especially other HiSS models[ The HiSS d�9 model is the associative
plasticity model developed for normally consolidated and overconsolidated clays[ A brief descrip!
tion of the model is given below for completeness[ For more details\ readers are referred to
Wathugala and Desai "0882# and Wathugala "0889#[

1[ HiSS d9� constitutive model

The HiSS d�9 constitutive model is an elasto!plastic constitutive model\ but it allows nonlinear
reloading "RL#[ The virgin loading "VL# has been modelled in the framework of plasticity theory\
and the yield surface F is de_ned in terms of stress invariants\ the _rst invariant of the stress tensor\
J0\ the second invariant of the deviatoric stress tensor\ J1D\ and the third invariant of the deviatoric
stress tensor\ J2D\ as

F 0 0
J1D

p0
a 1−$−aps0

J0

pa1
n

¦g0
J0

pa1
1

%"0−bSr#−9[4 � 9 "0#

where pa is the atmospheric pressure\ and aps is the hardening or growth function space[ g\ b and n
are material parameters[ Sr is de_ned as a stress ratio\ and given by

Sr 0
z16

1
J2DJ−2:1

1D [

The shape of the yield surface for a typical soil in di}erent stress spaces is shown in Figs 0 and 1[
When aps � 9\ the yield surface becomes the ultimate surface\ which envelops all the yield surfaces[

The hardening function for the d�9 model is de_ned as]

aps �
h0

"jv¦h2j
h3
D #h1

"1#

where h0\ h1\ h2 and h3 are material parameters[ For clays\ making h2 equal to zero yields the
intended contractive response[ In that case\ eqn 1 simpli_es to a volumetric hardening function[
The increments of trajectories of total\ volumetric\ and deviatoric plastic strains "jv and jD# are
de_ned here as]
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Fig[ 0[ Shape of yield surfaces in J0−zJ1D plane[

Fig[ 1[ Shape of yield surfaces in octahedral plane[
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dop
ij is the incremental deviatoric plastic strain tensor^ dop

v is the incremental volumetric plastic
strain due to virgin loading[

ðŁ are McAuley brackets and ðdovŁ � dov for dov × 9\ and ðdovŁ � 9 for dov ¾ 9[
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2[ Incremental stressÐstrain relationship

The incremental stressÐstrain relationship for virgin loading is given by

dsij � CVL
ijkl dokl "2#

where CVL
ijkl is the elasto!plastic constitutive sti}ness tensor for virgin loading[ General form of

CVL
ijkl is given by Wathugala "0889# as

CVL
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ijkl−
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where Ce
ijkl is the elastic constitutive sti}ness tensor[ The tensor nF

ij is de_ned as the unit normal
tensor to the yield surface\ and HVL is the virgin plastic modulus[ It is found from the consistency
condition in the theory of plasticity as
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where nF
Dij is the deviatoric part of the nF

ij tensor[

2[0[ Non!vir`in loadin`

In the HiSS d�9 model\ non!virgin loadings are further divided into unloading and reloading
depending on whether stress increment is directed outward or inward to the reference surface\ R[
The shape of R is similar to that of the F surface and can be obtained by replacing aps in eqn 0
with ar[ The value of ar is obtained by equating R � 9 and substituting current stresses[ The
unloading is assumed to be linear elastic[ The nonlinear incremental stress!strain relation for
reloading has been developed similar to that for the virgin loading with the following modi_cations]
"a# by substituting nF

ij by nR
ij \ which is the unit normal tensor for the reference surface R^ "b# plastic

modulus for virgin loading HVL is replaced by the plastic modulus for reloading HRL which is
found from an interpolation function given below[

HRL � HVL
I0 ¦HVL

I1 r000−
aps

ar1
r1

"5#

where r0 and r1 are material parameters\ and HVL
I0 and HVL

I1 are virgin plastic moduli at points I0

and I1 on the prestress surface "Fig[ 2#[ The image point I0 is located at the intersection between
the radial line passing through the current stress and the prestress surface[ The point I1 is located
at the intersection of the hydrostatic compression line and the prestress surface[

3[ Strain to stress algorithm

Displacement based nonlinear FEM procedures require a module which provides the stress
increment corresponding to a given strain increment for each Gauss integration point in each
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Fig[ 2[ Yield surface and reference surface in triaxial plane[

element for each Newton Raphson "NR# or Modi_ed NR iteration[ The strain to stress algorithms
presented here are used to develop this module[ In realistic boundary value problems\ the strain
path followed by Gauss integration points can be complex[ The size of the strain increment can
also vary widely[ Therefore\ it is important that these algorithms should be very stable and accurate
for variety of strain paths and for large strain increments[ Since this module is called so many
times during a single analysis\ computational e.ciency of this module can dominate the overall
e.ciency of the FEM procedure or program[

Normally\ the FEM program provides the strain increment\ current stress and history parameters
to the constitutive model module[ The _rst step in the algorithm is to determine the location of the
current stress point with respect to the current yield surface[ It could be inside or on the yield
surface[ According to the theory of plasticity\ it is not possible to have the stress point outside the
yield surface[ If the stress point is found to be outside the yield surface\ then that is due to numerical
errors\ and it should be moved back to the yield surface by correcting the stress point or yield
surface or both[ Traditionally\ the location of the current stress "sij# point is found by evaluating
the yield function\ F[ If the stress point is on the yield surface\ F"sij\ aps# � 9\ and if it is inside\
F"sij\ aps# ³ 9[

The second step is to determine the direction of the stress increment[ The exact direction of the
stress increment\ dsij\ for a given strain increment\ dokl\ is not known in advance[ Therefore an
approximate direction is evaluated by assuming elastic behavior[ This stress increment is commonly
known as the elastic predictor stress increment\ dse

ij[ It may be calculated from

dse
ij � Ce

ijkl dokl[ "6#

The possible elastic predictor stress increment directions when the stress point is inside the yield
surface is shown in Fig[ 3[ It should be noted here that the correct stress increment directions for
loading cases are di}erent from the elastic predictor directions[ However\ the constitutive model
is formulated in such a way that when the elastic predictor indicates loading\ the correct stress
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Fig[ 3[ Possible stress increment directions when current stress is inside the yield surface "after Wathugala\ 0889#[

Table 0
Possible stress increment directions when the current stress is inside the yield surface "after Wathugala\ 0889#

Stress increment dse
ijn

F
ij F"se

ij\ aps# ae
r Description

OA ×9 ³9 ar × ae
r × 9 Reloading

OB ×9 �9 ar × ae
r � 9 Reloading

OC ×9 ×9 ar × aps × 9 Reloading followed by Virgin Loading
OD �9 ³9 ar × ae

r × 9 Neutral Loading followed by Reloading
OE\ OJ ³9 ³9 ae

r × ar × 9 Unloading
OF ³9 �9 ar × ae

r � 9 Unloading followed by Reloading
OG ³9 ×9 ar × aps × 9 Unloading followed by Reloading and Virgin

Loading
OH ³9 ³9 ar × ae

r × 9 Unloading followed by Reloading
OI ³9 ³9 ae

r × ar × 9 Unloading followed by Reloading

direction is also directed outwards to the reference surface "yield surface for the virgin loading
case#[ Some properties of these elastic predictors are given in Table 0[ Details of algorithms used
to identify each part of the stress path are given in Wathugala "0889# and Pal "0886#[ The same
algorithm for the non!virgin loading is used in all the analyses[

3[0[ Vir`in loadin`

In general\ the incremental stress\ dsij\ corresponding to a given strain increment\ doij\ may be
found from eqn 2[ However\ CVL

ijkl changes with sij and hardening parameters that are related to the
plastic strains[ If eqn 2 is used repeatedly\ linearizing errors get accumulated and the stress point
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starts to drift away from the yield surface[ Four algorithms described here use di}erent techniques
to achieve accurate integration of the constitutive relationship for virgin loadings[ Modi_ed Euler
method limits linearizing error by adjusting the size of the substep\ whereas other methods use
iterative schemes to correct the errors in each step before moving to the next step[

The basic problem in calculating stress increment\ dsij corresponding to a given strain increment\
dokl which causes virgin loading\ may be expressed as follows]

given] sO
ij \ aO

ps\ jO
i \ dokl and F"sO

ij \ aO
ps# � 9

_nd] sC
ij and aC

ps so that F"sC
ij \ aC

ps# � 9
where] sC

ij and aC
ps are found from dokl � doe

kl¦dop
kl\ dsij � Ce

ijkl doe
kl\ sC

ij � sO
ij ¦dsij\

dji � fi"dop
kl#\ jC

i � jO
i ¦dji\ and aC

ps � fa"jC
i #[

Here\ superscripts O and C refer to initial and _nal converged quantities[ F is the yield function\
and fa is the hardening function[ Total\ elastic\ and plastic strain increments are given by dokl\ doe

kl\
and dop

kl respectively[ Ce
ijkl is the elastic constitutive tensor\ and ji are di}erent trajectories of plastic

strains such as j\ jD and jV[ The functions\ fi\ relate incremental plastic strains to incremental
trajectories[ Plastic strain in this step should also conform to the ~ow rule "dop

kl � lnQ
kl\ where nQ

kl is
the direction of plastic strain#[ If the exact decomposition of the incremental strain tensor\ dokl\
into its elastic and plastic components is known\ sC

ij \ jC
i and aC

ps can be computed[ Unfortunately\
this decomposition of the incremental strain tensor is not known in advance\ and most of the
iterative schemes for solution of the above system start with a trial decomposition of the incremental
strain tensor[

3[1[ PredictorÐcorrector type al`orithms

Elastic PredictorÐPlastic Corrector "EPÐPC# and Plastic PredictorÐPlastic Corrector "PPÐPC#
methods presented here were developed by modifying and improving algorithms by Ortiz and
Simo "0875# and Potts and Gens "0874#\ respectively[ However\ they are very similar and therefore
both the methods are described together here[ The di}erences will be indicated at appropriate
locations in the derivation[

All the methods in this group start with a trial decomposition of the incremental strain tensor[
Let us assume that these trial solutions move stress to an intermediate state I\ and a single correction
moves it to the _nal converged solution at C[ This is schematically illustrated in Fig[ 4[

If the trial solution assumes the decomposition for the strain tensor to be

dokl � doe\OI
kl ¦dop\OI

kl "7#

then all the quantities at the intermediate state\ I\ can be computed[ If point C is on the yield
surface\

F"sI
ij¦dsIC

ij \ fa"jI
i¦djIC

i ## � 9 "8#

Taylor|s series expansion of eqn 8 around the point I is given by

9 � F"sI
ij\ fa"jI

i##¦$
1f
1sij%I

dsIC
ij ¦$

1F
1aps

1fa
1ji%I

djIC
i ¦higher order terms[ "09#
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Fig[ 4[ Schematic diagram for ideal predictor corrector algorithm "after Wathugala\ 0889#[

By using ~ow rule\ dop\IC
kl � dlICnQ

kl\ for most of the constitutive models in practice\ dsIC
ij and djIC

i

can be expressed in terms of the single variable\ dlIC as

9 � F"sI
ij\ fa"jI

i##¦6$
1f
1sij%I

Ce
ijkln

Q
kl¦$

1F
1aps

1fa
1ji%I

fi"nQ
kl#7 dlIC¦higher order terms of dlIC[ "00#

By neglecting higher order terms of dlIC\ eqn 00 may be solved for dlIC as

dlIC �
−F"sI

ij\ fa"jI
i##

6$
1f
1sij%I

Ce
ijkln

Q
kl¦$

1F
1aps

1fa
1ji%I

fi"nQ
kl#7

[ "01#

Now all the quantities at C can be computed[ Since higher order terms in eqn 00 have been
neglected\ the solution obtained here would not satisfy the yield function given by eqn 0[ The
quantities obtained here actually refer to an intermediate state closer to the _nal converged
solution[ Substituting the solution obtained here as the intermediate state in eqn 01\ the procedure
is repeated until dlIC or F"sI

ij\ aI
ps# is less than a prescribed tolerance[

3[2[ Comparison of elastic predictor and plastic predictor methods

Two popular methods in evaluating the intermediate stress\ "a# elastic predictor "b# plastic
predictor\ are compared here[ In the EPÐPC method\ the initial dsOI

ij is obtained by Ce
ijkl dokl\ while

in the plastic predictor!plastic corrector method\ it is calculated using elasto!plastic constitutive
matrix\ Cep

ijkl\ corresponding to the initial stress point O[
From eqn 01\ sIC

ij may be expressed as
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sIC
ij �

−F"sI
ij\ fa"jI
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ijkln
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1F
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kl#7

[ "02#

For the EPÐPC method\ doe\OI
kl � dokl and dop\OI

kl � 9[ Therefore aI
ps � aO

ps[ The yield function\ F\
at the point I may be expanded using the Taylor|s series expansion around the point O as

F"sI
ij\ aI

ps# � F"sO
ij ¦dsOI

ij \ aO
ps# � F"sO

ij ¦aO
ps#¦$

1F
1sij%I

dsOI
ij ¦higher order terms[ "03#

Since doe\OI
kl � dokl for this method\ dsOI

ij � Ce
ijkl dokl[ After some algebraic manipulations "Wathu!

gala\ 0889# an expression for dsOC
ij may be found as

dsOC
ij �

K

H

H

H

H

k

Ce
ijkl¦

Ce
ijrsn

Q
rs0

1F
1smn1O

Ce
mnkl

0
1f
1sij1I

Ce
ijkln

Q
kl¦0

1F
1aps

1fa
1ji1I

fi"nQ
kl#

L

H

H

H

H

l

dokl[ "04#

The term inside the square bracket ðŁ is similar to the expression for the Cep
ijkl in eqn 3[ The only

di}erence is that all the terms in Cep
ijkl are calculated at a single point\ whereas in eqn 04\ di}erent

terms are calculated at di}erent points as indicated[ In the drift correction method "Potts and
Gens\ 0874#\ Cep

ijkl is calculated at the point O[ For small strain increments\ both methods give the
same answer\ but the elastic predictor method takes one more iteration to achieve the same
accuracy[ Since the elastic predictor method does not require the calculation of Cep

ijkl\ both methods
require equal numerical e}ort to achieve the same convergence limits for small increments[

Wathugala "0889# and Pal "0886# have found that improved accuracy can be obtained by
computing these quantities at a point closer to the point O[ Using values at point O leads to
numerical problems when stress path moves from pure hydrostatic to undrained shear[ Any point
close to point O would give good results[ In the present study\ all the quantities are computed at
a point 9[0×OI away from the point O[

3[3[ Implicit inte`ration method

The implicit integration method used here is based on the BackwardÐEuler integration scheme
where the normal to the potential surface\ nQ

kl\ at the _nal stress state is used for the plastic
correction[ This method has been used by various researchers "Simo and Taylor\ 0874^ Borja and
Lee\ 0889^ Jeremic and Sture\ 0884^ Macari et al[\ 0886^ Pal\ 0886# to integrate the elasto!plastic
constitutive models[

The BackwardÐEuler integration scheme can be expressed as]

sC
ij � sI

ij−lCe
ijkln

QC

kl "05#

where sC
ij is the _nal stress state\ sI

ij is the elastic prediction\ and nQC

kl is the normal to the plastic
potential surface at the _nal stress state C[ Generally\ an initial estimate of sC

ij does not satisfy the
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Fig[ 5[ Schematic representation of Implicit Method[

yield criteria as well as eqn 05 and an iterative scheme is necessary to bring the stress onto the yield
surface[

In order to derive such an iterative scheme\ a residual stress tensor is de_ned as]

rij � sC
ij−"sI

ij−lCe
ijkln

QC

kl # "06#

where rij represents the di}erence between estimated current state sij "point E in Fig[ 5# and the
implicit stress state of BackwardÐEuler scheme "sI

ij−lCe
ijkln

Q
kl#\ which represents the error in the

current estimate of stress sC
ij [ Equations 05 and 06 are schematically illustrated in Fig[ 5[ Due to

space limitations\ details of the algorithm are not given here[ Readers are referred to Pal "0886#
for more details[

3[4[ Modi_ed Euler method

Modi_ed Euler scheme has been used by several researchers "Nayak and Zienkiewicz\ 0861^
Sloan\ 0876^ Ganendra and Potts\ 0883^ Pal\ 0886# for integrating elasto!plastic constitutive models[
Sloan "0876# modi_ed the algorithm so that it controls the error in the integration of the constitutive
model by adjusting the size of each substeps automatically[ This method does not perform the
drift correction generally used to make sure that the stress point lies on the yield surface[ Therefore\
this method can be used even with constitutive models that do not have yield surfaces[ The detailed
description of the method is given by Sloan "0876# and Pal "0886#[ A schematic representation of
the Modi_ed Euler method is shown in Fig[ 6[
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Fig[ 6[ Schematic representation of the Modi_ed Euler method[

3[5[ Subincrementation

All the four methods use subincrementation for better accuracy[ In the Modi_ed Euler method\
the size of the subincrementation is controlled automatically depending on the accuracy of the
solution "TOL value#[ The other methods\ EPÐPC\ PPÐPC\ and Implicit\ use _xed size sub!
incrementation where the strain increment dokl is subdivided into n equal parts[

n � largest integer part of 0
dokl

Domax1¦0 "07#

where Domax is the largest subincrement permitted[ Now the subincrement strain\ dokl\ may be
calculated from dokl � dokl:n[ For each subincrement strain\ dokl\ the above mentioned algorithms
are used to compute the stress increment dsij[ Assigning a large value for TOL in ME and Domax in
other methods will e}ectively stop subincrementation in these algorithms[

4[ Comparing the performance of different algorithms

The overall performance of an algorithm may be studied by analyzing its accuracy\ stability and
e.ciency[ These aspects are related but they are di}erent[ Accuracy is de_ned as the ability to
predict accurate results[ Accuracy can be evaluated by comparing the numerical results from an
algorithm with the {exact| or a very accurate solution[ Very accurate solutions may be obtained by
"a# analytical solutions if and when available^ "b# stress to strain algorithm "Wathugala and Desai\
0883#^ and "c# using an algorithm that converges to the exact answer for very small steps[ The
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ability of an algorithm to produce accurate results with large strain increments is desirable[
Instability is de_ned here as the state where numerical results start varying randomly or start
oscillating or inability to achieve convergence[ Here\ e.ciency is de_ned as the inverse of the
computing cost of achieving the same level of accuracy and stability[ All three aspects discussed
above are very important for an implementation algorithm[

The easiest way to analyse these algorithms is to input strain controlled paths directly into the
model subroutines without connecting them to the _nite element program[ This allows better
control of the program and facilitates interactive debugging and analyses[ However\ it is necessary
to test these algorithms inside a _nite element program during the solution of a real boundary
value problem due to the following reason[ At each global equilibrium iteration in nonlinear FEM\
unbalanced loads are computed from the stresses provided by the constitutive model subroutine[
The next strain increment supplied to the constitutive model subroutine at a Gauss integration
point\ is a}ected by the stresses at other Gauss integration points through the global equilibrium
equations[ Therefore\ the stability of an integration algorithm outside a _nite element program
may be di}erent from that during the solution of a real boundary value problem using FEM[ In
this study\ we have compared all the algorithms for both cases described above[ The results also
showed that it is important to analyse these algorithms under di}erent stress and strain paths
before making a _nal conclusion of their performance[ Material parameters for a typical clay have
been used for all the analyses here "E � 00\921 kPa\ n � 9[24\ g � 9[936\ b � 9\ m � −9[4\ n � 1[7\
h0 � 0[9×09−3\ h1 � 9[67\ h2 � 9\ and h3 � NA#[ Since our objective is to compare the algorithms
for virgin loading\ all the numerical examples have been designed to experience virgin loading
only[ Therefore\ non!virgin loading parameters do not a}ect our results[ In the present study\
linear elastic non!virgin loading has been assumed[ However\ the ideas presented in Fig[ 3 and
Table 0 for non!virgin loading are still necessary to improve the robustness of the algorithm
"Wathugala and Pal\ 0885#[

4[0[ Prediction of simulated triaxial tests

Three di}erent triaxial tests have been selected so that they cover many stress and strain
conditions with the least amount of tests[ The e}ective stress path of these tests in the pÐq space
"p � J0:2 and q � s0−s1# is schematically given in Fig[ 7[ It can be observed from the _gure that
the proposed tests cover a wide area of the stress space[

4[1[ Consolidated drainedÐconventional triaxial compression stress path "CDÐCTC#

Here we simulated a consolidated drained test along the conventional triaxial compression
"CTC# stress path "i[e[\ Ds0 × 9\ Ds1 � Ds2 � 9# using the stress to strain algorithm "Wathugala
and Desai\ 0883#[ This algorithm can be used to obtain very accurate "numerically {exact|# strain
path for any stress path using HiSS models[ Then the resulting strain path is given as input to all
the four algorithms to obtain the corresponding stress paths[ These stress paths are then compared
with the original stress path to assess the accuracy of the algorithm[

Analyses were performed with very small "Domax � 09−3 and TOL � 09−4# to large "Domax � 09−1

and TOL � 0# strain substep sizes[ For small strain substeps\ all the methods gave accurate and
stable results[ However\ for large Domax Implicit method moved away from the correct results and
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Fig[ 7[ Stress paths followed by di}erent triaxial tests[

_nally showed instability\ as shown in Fig[ 8[ This was not expected since the Implicit method was
claimed to be unconditionally stable "Ortiz and Popov\ 0874#[ At present\ we do not know the
exact reason for this instability[ However\ we speculate that all the assumptions used in the proof
for unconditional stability for the Implicit method may not have bene satis_ed by the HiSS model[
Some peculiarities of HiSS model that might contribute to this include "a# even though HiSS yield
surface "F � 9# is convex\ F � constant × 9 contours near the J0 axis are not convex[ Implicit
method uses the normal to these contours in its computations^ "b# our de_nition for instability is
di}erent from that used in Ortiz and Popov "0874#[

At large tolerances\ stress path predicted by ME "Modi_ed Euler# crossed the critical state line[
Otherwise it provided accurate results[ The performances of both EPÐPC "Elastic PredictorÐPlastic
Corrector# and PPÐPC "Plastic PredictorÐPlastic Corrector# methods were similar[ They predicted
failure stresses accurately[ However\ predicted stress paths deviated a little to the right of the
correct stress path[

The CPU times taken by all these analyses on a IBMRS:5999 model 244 are plotted in Fig[ 09[
It can be observed from here that in general Implicit method is much more computationally
expensive than the other methods for this stress path[ The other methods are all in the same range[

Similar trends were observed for CPU times when the same tests were run on a Pentium 049
MHz PC running Linux "Redhad 3[1# operating system with fort66 compiler[
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Fig[ 8[ Stress paths of the CTC drained test "Domax � 09−1\ TOL � 0#[
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Fig[ 09[ CPU time taken by di}erent algorithms for CDÐCTC[

4[2[ Consolidated drainedÐtriaxial extension "CDÐTE#

The same analysis procedure as for the earlier case was repeated for a CDÐTE test
"Ds0 � −Ds1:1 � −Ds2:1 ³ 9#[ In this case too\ all the algorithms predicted identically same
stress paths under small strain increments[ However\ it was little di}erent from the original correct
stress path for the TE test[ This is due to the error induced by using a _nite size strain increments
to de_ne the stress path[ In subincrements\ we assume that the ratio between components of the
strain tensor remain constant during a strain increment[ However\ in the correct strain path\ the
ratio between strain components changes from one sub!strain increment to the next sub!strain
increment[ At larger strain increments\ the stress paths deviated from the correct path by about
9[2)[ Implicit method deviated most from the correct path[ Predictions from the EPÐPC and PPÐ
PC methods moved away from the correct stress path around zJ1D � 59\ but predicted the correct
stresses at failure[ All the methods were stable in this prediction[

The CPU time taken by all these analyses on an IBMRS:5999 model 244 and Pentium 049 MHz
computer were compared[ The same trend as in the CDÐCTC case was observed here[

4[3[ Consolidated undrainedÐconventional triaxial compression "CUÐCTC#

For an undrained test on a saturated clay\ volume is conserved[

dov � do0¦do1¦do2 � 9[ "08#

For isotropic samples on the axisymmetric loading from the triaxial equipment do1 � do2[ There!
fore\ this test can be simulated as a strain controlled test by applying do0 � −1do1 � −1do2[ As in
the earlier cases\ all the methods predicted the same stress path for small strain increments[
Therefore\ we denoted that path as the {correct| stress path[ Even for large strain increments\ all
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Fig[ 00[ Stress paths of the TE drained test "Domax � 09−1\ TOL � 0#[

the algorithms predicted accurate stress paths[ However\ as in CDÐCTC\ predicted stress path for
ME crossed the critical state line and Implicit method became unstable near failure "Fig[ 01#[

The CPU time taken by all these analyses on an IBMRS:5999 model 244 and on a Pentium 049
MHz PC were compared[ The same trend as in the other two cases was observed here[

4[4[ Finite element simulations

All the algorithms have been implemented in the commercial _nite element program\ ABAQUS
"HKS\ Inc[\ 0886#[ In this section\ we present results of comparison of _nite element simulations
of strip footings on the same clay soil used in earlier triaxial test simulations with all the four
algorithms[ Both rigid\ displacement controlled and ~exible\ load controlled footings were
analysed[ The _nite element mesh for both problems is the same and is given in Fig[ 02[ All the
elements are eight noded plain strain isoparametric elements with reduced integration "Element
type CPE7R in ABAQUS#[ The number of elements were made small in order to facilitate the
large number of analyses in the study[ Initial conditions such as stresses\ and hardening parameters
were computed by assuming normally consolidated clay at K9 "� 9[41# stress conditions[ In order
to minimize numerical problems due to zero e}ective stress state on the surface\ a surcharge of 19
kPa was applied on the surface of the clay for all the problems[ This may be interpreted as a soil
of about 0 m deep without any shear strength[ Sometimes it is necessary to develop special
procedures to handle stress points J0 � 9 e.ciently[ Therefore\ it was decided to add this surcharge
so that this aspect will not interfere with our comparisons[
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Fig[ 01[ Stress paths of the CTC undrained test "Domax � 09−1\ TOL � 0#[

4[5[ Ri`id footin`

Here\ all the nodes under the footing were given the same vertical displacement until failure of
the footing[ Two hundred equal displacement increments of 9[3 mm each were applied[ The
problem was analysed with di}erent Domax for EPÐPC\ PPÐPC and Implicit methods and di}erent
tolerance for the ME method[ For very small Domax "³09−3# EPÐPC\ PPÐPC and Implicit methods
gave the same load deformation curve\ as shown in Fig[ 03[ However\ ME with very small
tolerances "i[e[\ TOL ³ 09−4# di}ered near failure\ as shown in Fig[ 03[ To investigate these
unexpected results\ we performed an analysis with 0199 small increments of 9[956 mm displacement
using ME method[ However\ still it did not converge to the solution obtained from the other
methods[ At this point\ we computed the values of F\ stress ratio "zJ1D:J0# and the distance from
the yield surface for all the Gauss integration points at failure for EPÐPC and ME methods[ For
the EPÐPC method\ results indicated that stress points were on the yield surface or inside it as
expected[ However\ in the ME method\ for several Gauss points\ stress points were far outside the
current yield surface[ This is due to the accumulation of errors in each small step[ Readers may
recall that in the ME method\ we do not perform any drift correction[ Therefore\ it was concluded
that the converged results obtained from other methods are the {correct| solution for the footing
problem[ This result was denoted as the {correct| solution for the problem in subsequent analyses
with larger Domax and TOL[ ME method failed to achieve convergence for higher tolerances
"×09−4#[ The other three methods provided accurate and stable results for all the Domax values
"i[e[\ 09−1\ 09−2 and 09−3#[
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Fig[ 02[ FEM mesh for the footing problem[

Fig[ 03[ Load!settlement curves for the rigid footing "Domax � 09−3\ TOL � 09−4#[
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Fig[ 04[ CPU time taken by di}erent algorithms for the rigid footing[

Figure 04 shows the CPU time taken by each analysis on an IBMRS:5999 Model 244 work!
station[ Maximum strain step size for each analysis is given in the legend for all the methods except
ME[ For ME\ TOL value is given in the legend[ Similar trends as for the triaxial stress paths have
been observed here[ The Implicit method is the most expensive one in terms of CPU time[ For
given accuracy and stability\ EPÐPC and PPÐPC are the least CPU time!consuming[

4[6[ Flexible footin`

Here\ 024 kPa footing pressure was applied in 024 equal increments[ Figure 05 compares the
load settlement curves for all the algorithms with small strain increments "i[e[\ Domax ³ 09−3 for
EPÐPC\ PPÐPC and Implicit and TOL³ 09−4 for ME#[ As in the case with the rigid footing\ EPÐ
PC\ PPÐPC and Implicit methods converged to the same load settlement curve for small Domax[
However\ converged solution for the ME di}ered from the other methods even for small tolerances[
After investigating\ it was found that the stress state at some Gauss integration points in the ME
method were outside the yield surface[ Therefore\ the converged solution from the _rst three
methods was denoted as {correct| solution for this problem too[ For large Domax values\ Implicit
method did not converge at around 14 mm of settlement[ EPÐPC and PPÐPC methods converged
for all the strain step sizes[

Similar trends for CPU time as for the triaxial stress paths and the rigid footing have been
observed here[ The Implicit method is the most expensive one in terms of CPU time[ For given
accuracy and stability\ EPÐPC and PPÐPC are the least CPU time!consuming[

5[ Conclusions

Four di}erent algorithms] "a# Elastic PredictorÐPlastic Corrector "EPÐPC#\ "b# Plastic PredictorÐ
Plastic Corrector "PPÐPC#\ "c# Backward Euler or Implicit and Modi_ed Euler "ME# for implemen!
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Fig[ 05[ Load!settlement curves for the ~exible footing "Domax � 09−3\ TOL � 09−4#[

tation of plasticity based constitutive models under virgin loading were reviewed[ All these algo!
rithms were implemented in the commercial _nite element program ABAQUS[ Relative per!
formance in terms of accuracy\ stability and e.ciency of these four algorithms in simulating
laboratory triaxial tests in a variety of stress paths and load controlled and displacement controlled
strip footings was compared[

5[0[ Accuracy

For the triaxial stress paths\ all the algorithms gave accurate results with small strain increments[
EPÐPC\ PPÐPC and Modi_ed Euler produced more accurate results than Implicit method for large
strain increments[ However\ for some tests\ ME predicted stress path passed the critical state line[
EPÐPC\ PPÐPC and Implicit methods produced accurate results for the _nite element analysis of
both rigid and ~exible footings[ Modi_ed Euler method predicted failure loads higher than the
other methods possibly due to its inability to satisfy consistency condition at all the Gauss
integration points[

5[1[ Stability

All the algorithms were stable with small strain increments for simple stress paths[ EPÐPC\ PPÐ
PC and Modi_ed Euler were stable even for large strain increments[ Implicit method became
unstable near failure for large strain increments[ This was not expected because the Implicit
Method is known to be unconditionally stable "Ortiz and Popov\ 0874#[ However\ the de_nition
of instability here is qualitative and is di}erent from Ortiz and Popov "0874#[ The nonconvex
contours of F � constant × 9 near J0 � 9 may have contributed to this instability[ In general\ it
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was found that the Finite element analysis of the displacement controlled rigid footing was more
stable than the load controlled ~exible footing[ For smaller strain increments all the methods were
stable[ However\ for large strain increments\ Modi_ed Euler method became unstable for both
footing problems[ For large strain increments\ Implicit method was stable for the rigid footing but
not for the ~exible footing[ EPÐPC\ PPÐPC were stable for large increments for both footings[

5[2[ Ef_ciency

EPÐPC\ PPÐPC and Modi_ed Euler methods were more e.cient than Implicit method for simple
stress paths[ In _nite element analyses\ EPÐPC\ PPÐPC were more e.cient than ME and Implicit
method[

Based on the systematic numerical analyses presented here\ it can be concluded that EPÐPC\
PPÐPC both perform equally well in all the aspects[ Even though only the HiSS d�9 was used in the
present study\ the results obtained here could provide useful insights for other elasto!plastic models
in use for soils[
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